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1 Model

Many economics data are missing due to sample selection, in which the sampling is non-
random. A popular method for sample selection estimation is Heckit (Heckman, 1979) as
follows.

y = dy∗; (1)

Prob(d = 1|Z) = Φ(Zγ) (2)

y∗ = Xβ + u (3)

E[y|X,D = 1] = Xβ + ρσuλ(Zγ) (4)

Heckit assumes that missing data are due to a binary-choice selection equation. Once
a consistent estimate of the correction term is obtained, economists add the term into
the outcome regression with observed dependent variable only and obtain the estimate of
parameter in interest. Heckit relies on three conditions. Identification requires exclusion
restrictions, namely that the selection equation has at least one covariate that is not in the
main regression equation. Errors in selection and main regression equations are correlated,
usually assumed to be jointly normally distributed. Lastly, economists need to pre-specify
covariates and functional forms.

I explore a sample selection estimation method in a high-dimensional context without
pre-specification of control variables. The following is the model:

yi = diy
∗
i ; (5)

y∗i = Xiθ + g0(Wi) + νi, E[νi|Xi,Wi] = 0; (6)

di = 1{m0(Zi, Xi,Wi) + εi ≥ 0}, (i = 1, ..., n), E[εi|Xi,Wi, Zi] = 0 (7)

Xi = p0(Wi) + ηi,E[ηi|Wi] = 0; (8)

νi =
ρ√

1− ρ2
Φ−1Λ(εi) + ζi, ζi ∼ N (0, 1), ρ := corr(Φ−1Λ(ε), ν). (9)
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1. Equation (1): di is the binary selection indicator and yi is the sample observation. y∗i
is the unobserved true data.

2. Equation (2): DGP of y∗i . The economic question in interest is how X affects y∗, and
the goal is to conduct consistent estimate and valid inference on θ. W denotes an n× p
control variable matrix in which p > n. g0(Wi) is an unknown function. ν is normally
distributed.

3. Equation (3): Selection equation. Zi, the variable in selection but not in y∗i , is to satisfy
the exclusion restriction for identification1. m0(Zi, Xi,Wi) is an unknown function. εi
is logistically distributed.

4. Equation (4): Statistical relationship between X and controls as a guard against omitted
variable bias. Crucial for tackling post-selection inference problem by Leeb and Pöscher
(2005).

5. Equation (5): Imposes a relation between εi and νi, without which missing data is not
a concern, implies an analytical form of the sample correction term κ.

Key Assumption: approximate sparsity, namely that m0, g0 and p0 can be well approx-
imated by a few covariates whose identities are ex-ante unknown. In practice I impose a
linear structure on the three functions and use LASSO to select important controls.

Assumption 1 (Approximate Sparsity with Exclusion Restriction). Each of zi and yi is
well-approximated by a function of s ≥ 1 covariate terms, whose coefficients γ and β depend
on n and P . and the approximation error is no larger than

√
s/n of the oracle estimator

error:

m0(Zi, Xi,Wi) = Ziα +Xiδ +W ′
iγ + rmi + εi, ||γ||0 ≤ s,

√
{E(r2zi)} ≤ C

√
s/n

g0(Wi) = W ′
iβ + rgi, ||β||0 ≤ s,

√
{E(r2gi)} ≤ C

√
s/n;

p0(Wi) = W ′
iϑ+ rpi, ||ϑ||0 ≤ s,

√
{E(r2xi)} ≤ C

√
s/n

The sparsity index s obeys s2 log2(max{p, n})/n→ 0.

2 Equations for Estimation

In the fist step, we have

di = 1{Ziα +Xiδ +W ′
iγ + rmi + εi ≥ 0}.

1Without this variable the identification of θ will depend on distribution assumption on errors.
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Run LASSO-Logit on d against X, imposing zero penalty on Z; calculate κ̂.

In the second step, we have

E(yi|Wi, Xi, Zi, di = 1) = Xiθ + g0(Wi) + ωκ,

Xi = p0(Wi) + ηi.

This looks very similar to double selection model in Belloni, Chernozhukov and Hansen
(2014). Double Selection Algorithm: Regress y on W using LASSO. Denote covariates
with non-zero coefficients as Î1. Regress X on W using LASSO. Denote covariates with
non-zero coefficients as Î2. Denote Î = Î1 ∪ Î2. In practice we only have κ̂.

In the third step, use a plug-in approach. Now that we have κ̂ and Î, one thought to obtain
θ̂ is to plug the selected control Î and estimated correction term κ̂ into the main regression,
and get

θ̂ = arg min
θ,β,ω

n∑
i=1

di(yi −X1iθ − Îβ − κ̂ω)2.

3 Current Results:

If there were no κ̂ this estimator is essentially the post-LASSO solution in Belloni, Cher-
nozhukov & Hansen (2014)2. However, the presence of κ̂brings in two complications. Firstly,
κ̂ is a generated regressor, so approximation error in the LASSO-Logit regression will carry
into the main regression. What’s more, my model doesn’t take a stand whether X enters the
selection equation in an economically significant way. It turns out the coefficients of X in the
selection equation greatly affects the performance of the plug-in estimate.

4 Analytical Form of Correction Terms

By writing the expectation conditional on observed y, we have the following:

E(yi|Wi, Xi, Zi, di = 1) = Xiθ + g0(Wi) + ωE(νi|Wi, Xi, Zi, εi ≥ −m0(Zi, Xi,Wi)),

where the last term on the right hand side is the sample selection correction term. Denote it
as κ. Due to the assumptions on ν and ε, the analytical forms of κ and its coefficients ω are

2In fact, the paper allows researchers to add a small amount of covariates that are not selected by LASSO
in the regression. The authors call them amelioration covariates, and show that their presence doesn’t affect
consistency and asymptotic distributions as long as the cardinality is smaller than that of Î
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as follows:

κ := E(νi|εi ≥ −m0(Zi, Xi,Wi)) =

∫ J(m0(Zi,Xi,Wi))

−∞ J(ε)f(J(ε))dJ(ε)

Λ(m0(Zi, Xi,Wi))

ω =
ρ√

1− ρ2

where J = Φ−1Λ and f(J(ε)) denotes the PDF of J(ε).
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