ECONOMETRICS OF INCOMPLETE MODELS

Shuowen Chen

Fall 2020: BU Econometrics Reading Group

OUTLINE

- Notion of incompleteness
- One type of incompleteness: multiple equilibria
 - Complete information entry game
- Challenges due to incompleteness
 - Likelihood-based estimation
 - Assumptions to complete the model affects inference
 - Assumptions on data sampling affect inference
- Work in progress: robust score test
 - Inference on existence and sign of interaction effect
 - Robust to not knowing which equilibrium is played
 - Why not likelihood ratio test? Nuisance parameters

Model Coherence and Completeness (Lewbel, 2019)

Consider a proposed model of the form Y = H(Y, V)

- Y: a vector of endogenous outcomes (prices, agent choices, etc.)
- ► *V*: a set of (un)observables that determine outcomes (parameters of interest, exogenous covariates, error terms, etc.)

The model is **coherent** if

 $\forall v \in \Omega_V, \exists y \in \Omega_Y \text{ s.t. } y = H(y, v)$

The model is complete if

▶ $\forall v \in \Omega_V$, \exists at most one $y \in \Omega_Y$ s.t. y = H(y, v)

Model Incoherence and Incompleteness

The **reduced form** of the model expresses *Y* solely in terms of *V*

$$y = G(v)$$

Remarks:

Coherenence and completeness feature a unique reduced form

$$G(v) = H(G(v), v)$$

- \triangleright An incoherent model has no solution for some values of v
 - A game with no Nash Equilibrium
- A coherent and incomplete model has multiple solutions for some values of v
 - A game with multiple Nash Equilibria
 - ▶ Reduced form $G(\cdot)$ is not unique

OUTLINE

- ► One type of incompleteness: multiple equilibria
 - ► Complete information entry game

BINARY COMPLETE INFO STATIC ENTRY-EXIT GAME

Out		ln		
Out	0, 0	$0, x^{(2)}'\delta^{(2)} + u^{(2)}$		
In	$x^{(1)}'\delta^{(1)} + u^{(1)}, 0$	$x^{(1)}'\delta^{(1)} + \beta^{(1)} + u^{(1)}, x^{(2)}'\delta^{(2)} + \beta^{(2)} + u^{(2)}$		

- Competition effect: $\beta^{(1)} < 0, \beta^{(2)} < 0$
- $u := (u^{(1)}, u^{(2)}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_2)$
 - Complete info: realizations are perfectly observed by both players
- $\triangleright x^{(i)}$: exogenous covariates
- \triangleright $\delta^{(i)}$: nuisance parameters
- ▶ Inference: $H_0: \beta^{(i)} = 0, \ \delta \in \Theta_{\delta} \text{ vs } H_1: \beta^{(i)} < 0, \ \delta \in \Theta_{\delta}$
- Solution concept: pure strategy Nash Equilibrium
 - 1. (0,0) is a NE when $u^{(i)} < -x^{(i)}'\delta^{(i)}$
 - 2. (1,1) is a NE when $u^{(i)} > -x^{(i)} \delta^{(i)} \beta^{(i)}$
 - 3. (1,0) is a NE when $u^{(1)} > -x^{(1)}'\delta^{(1)}$ and $u^{(2)} < -x^{(2)}'\delta^{(2)} \beta^{(2)}$
 - 4. (0,1) is a NE when $u^{(2)} > -x^{(2)}'\delta^{(2)}$ and $u^{(1)} < -x^{(1)}'\delta^{(1)} \beta^{(1)}$
- ▶ (3) and (4) intersects: $-x^{(i)}'\delta^{(i)} < u^{(i)} < -x^{(i)}'\delta^{(i)} \beta^{(i)}$

Visualization of the Equilibria

- $A \equiv (-x^{(1)}'\delta^{(1)}, -x^{(2)}'\delta^{(2)}),$ $B \equiv (-x^{(1)}'\delta^{(1)} - \beta^{(1)}, -x^{(2)}'\delta^{(2)} - \beta^{(2)})$
- ▶ **Incompleteness:** relationship from u, X, β and δ to y is a correspondence rather than a function (Tamer, 2003)
- ► Complete if either $\beta^{(1)} = \beta^{(2)} = 0$, or an equilibrium selection mechanism is imposed in the blue region

Model-predicted Distributions of Outcomes

$$\mathcal{P}_{\theta} = \left\{ P \in \Delta(S) : P = \int_{U} P_{u} dm_{\theta}(u), \text{ for some } P_{u} \in \Delta(G(u \mid \theta; X)) \right\}$$

- $\bullet \ \theta := (\beta, \delta)$
- S: set of potential outcomes $\{(0,0),(0,1),(1,0),(1,1)\}$
- $ightharpoonup \Delta(\cdot)$: probabilty simplex
- $ightharpoonup P_u$: equilibrium selection mechanism
- $ightharpoonup m_{\theta}(\cdot)$: probability measures on U
- $G(u \mid \theta; X)$: set of model–predicted outcomes

Remarks:

- ▶ $G(u \mid \theta; X)$: math expression of graphs in the previous slide
- $ightharpoonup eta^{(1)} = eta^{(2)} = 0$: unique distribution, set of distributions otherwise
- \triangleright δ can enter nonlinearly

OUTLINE

- Challenges due to incompleteness
 - Likelihood-based estimation
 - Assumptions to complete the model affects inference
 - Assumptions on data sampling affect inference

Data: A Cross Section of Markets

Consider a sequences of observed outcomes and latent variables

$$s^n = (s_1, ..., s_n), \quad u^n = (u_1, ..., u_n)$$

Assumption: For each $\theta \in \Theta$, $m_{\theta}^n \in \Delta(U^n)$ is a product measure: u_i 's are i.i.d across markets

► Takes values in Cartesian product of sets of permissible outcomes

$$s^n \in G^n(u^n \mid \theta; X) = \prod_{i=1}^n G(u_i \mid \theta; X)$$

Set of model-compatible distributions:

$$\mathcal{P}_{\theta}^{n} = \left\{ P \in \Delta(S^{n}) : P = \int_{U} P_{u} dm_{\theta}^{n}, \text{ for some } P_{u} \in \Delta(G^{n}(u^{n}|\theta;X)) \right\}$$

Does this assumption restrict selection mechanisms to be IID? NO

MLE IS NOT STRAIGHTFORWARD IN INCOMPLETE MODELS

- When $\beta = 0$, unique model prediction and hence likelihood
- When $\beta \neq 0$, if impose a selection in blue region (e.g., (1, 0) is played for sure in each market), still unique likelihood
- But not knowing the selection? Non-unique likelihood, hence MLE not feasible

Remarks:

- Each specification of a selection leads to a different likelihood, hence MLE result
- Motivates an alternative approach that is agnostic about the selection mechanism

Bounds Approach (Ciliberto and Tamer, 2009)

- ▶ $Pr(u \in \text{yellow}) \le Pr((1,0)) \le Pr(u \in \text{yellow}) + Pr(u \in \text{blue})$
- ▶ In vector form: $H_1(\theta; X) \leq Pr(y \mid X) \leq H_2(\theta; X)$
- ▶ Identified set: set of pars $\theta = (\beta, \delta)$ that satsifies inequalties
- Estimate identified set and construct confidence region

WHY INCOMPLETENESS CAN AFFECT INFERENCE

- ► Inference on identified set imposes i.i.d. or stationarity and mixing assumptions on data (e.g., Chernozhukov, Hong and Tamer, 2007)
- Unknown selection mechanisms across markets can cause unobserved heterogeneity and dependence
- May lead to non-ergodic distribution of data
- Invalidates central limit theorem (Epstein, Kaido and Seo, 2016)

One Example of Non-ergodic Sequence

- Suppose the N markets can be partitioned into clusters
 e.g.: Markets 1-4 form a cluster, 5-15 form a cluster, etc.
- Within each cluster k, a Bernoulli random variable picks (1,0) with some cluster–specific cutoff rule
- ► The sequence of Bernoulli r.v. is i.n.i.d, but the selection mechanisms within each cluster are dependent

Figure 1.4: Sample Path of $n^{-1}\sum_{i=1}^{n} 1\{s_i = (1,0)\}$ (Incomplete Model)

OUTLINE

- Work in progress: robust score test
 - Inference on existence and sign of interaction effect β
 - Robust to not knowing which equilibrium is played
 - Device: Least Favorable Pairs (Kaido and Zhang, 2019)
 - **•** Why not likelihood ratio test? Nuisance parameters δ

Introduction of Least Favorable Pairs

Consider the simple null vs simple alternative testing in one market:

$$H_0: \boldsymbol{\theta} = \boldsymbol{\theta_0}, \quad H_1: \boldsymbol{\theta} = \boldsymbol{\theta_1}$$

- ▶ Under H_0 , set of model–compatible distributions \mathcal{P}_{θ_0}
- ▶ Under H_1 , set of model–compatible distributions \mathcal{P}_{θ_1}

A test $\phi: S \rightarrow [0, 1]$ should

- Control the size under any distribution in \mathcal{P}_{θ_0}
- ► Have good power under any distribution in \mathcal{P}_{θ_1}
 - ► Lower power: power guaranteed regardless of unknown selection

Least favorable pair (LFP): $Q_0 \in \mathcal{P}_{\theta_0}$ and $Q_1 \in \mathcal{P}_{\theta_1}$

- Q_0 is least favorable for size control: among all distributions in \mathcal{P}_{θ_0} , largest type one error
- Q_1 is least favorable for lower power: among all distributions in \mathcal{P}_{θ_1} , smallest power

LFP FOR INFERENCE

Intuition:

► Given a simple hypothesis, find the pair of distributions that is the most difficult to distinguish from each other

Why can we do this?

- $\triangleright \mathcal{P}_{\theta}$ has a structure
 - Characterize the set using lower probabilities
 - Entry-game: smallest probability that each outcome is played
- ▶ Tradeoff: \mathcal{P}_{θ} comes from model primitives

How do we do this?

A convex algorithm based on Huber and Strassen (1973)

How to Compute an LFP in a Market

Conditional on X and δ , under the null $\beta_0 = 0$:

▶ Unique distribution of outcomes (0,0), (0,1), (1,0), (1,1):

$$Q_0 = \Big((1 - \Phi_1)(1 - \Phi_2), (1 - \Phi_1)\Phi_2, \Phi_1(1 - \Phi_2), \Phi_1\Phi_2 \Big),$$

where
$$\Phi_i := \Phi(x^{(i)}'\delta^{(i)})$$

Under an alternative $\beta_1 \in B := (-\infty, 0) \times (-\infty, 0)$:

- ► The algorithm partitions B into three regions whose boundaries depend on β_1 , X and δ
 - Economic interpretation: in the region of multiplicity, (1, 0) is played; (0, 1) is played; a mixture is played
- ▶ Each region has a unique distribution dependent on β_1 , X and δ Given a specific alternative, algorithm determines the region it's in and hence distribution Q_1

▶ An example of LFP form

LFPs in Cross Section

If latent variables are i.i.d. across markets, LFP for s^n is a Cartesian product of LFP for each market outcome (Kaido and Zhang, 2019)

- Even though selection mechanisms across markets can be intertwined in unknown forms, it doesn't matter for product LFP
- Each LFP is a pair of likelihood, product LFP is likelihood
- A unique likelihood under the null, another under the alternative
- Implication? Likelihood ratio test for simple hypothesis testing

ROBUST LIKELIHOOD RATIO TEST (KAIDO AND ZHANG, 2019)

Cross section without exogenous covariates, inference is

$$H_0: \beta^{(i)} = 0, \quad H_1: \beta^{(i)} = \beta_1$$

Likelihood ratio test: $\phi_n : S^n \mapsto [0, 1]$ such that

$$\phi_n(s^n) = \begin{cases} 1 & \Lambda_n(s^n) > C_n \\ \gamma_n & \Lambda_n(s^n) = C_n \\ 0 & \Lambda_n(s^n) < C_n \end{cases}$$

- 1. Given the alternative, compute LFP Q_0 and Q_1 for each market
- 2. Form ratio of using likelihood pairs: $\Lambda_n(s^n) = \prod_{i=1}^n \frac{dQ_1(s_i)}{dQ_n(s_i)}$
- 3. Compute $\mu_{Q_0} = \mathbb{E}_{Q_0}(\ln \Lambda_n(s^n))$ and $\sigma_{Q_0}^2 = Var_{Q_0}(\Lambda_n(s^n))$. Denote z_{α} as 1α quantile of $\mathcal{N}(0, 1)$, construct the critical value

$$C_n = \exp(n\mu_{Q_0} + \sqrt{n}z_\alpha \sigma_{Q_0})$$

WHY ROBUST SCORE TEST?

Motivation:

Subvector inference:

$$H_0: \boldsymbol{\beta}^{(i)} = 0, \ \boldsymbol{\delta} \in \Theta_{\delta} \quad H_1: \boldsymbol{\beta}^{(i)} < 0, \ \boldsymbol{\delta} \in \Theta_{\delta}$$

- Composite null and composite alternative
- Kaido and Zhang (2019) provide a likelihood-ratio test that
 - controls size uniformly over $\Theta_0 \equiv \{\theta := (\beta, \delta) : \beta^{(i)} = 0, \delta \in \Theta_{\delta}\}$
 - maximizes the weighted average lower power
 - ightharpoonup becomes computationally intensive for moderately high dimensional $\pmb{\delta}$

Advantages of score test:

- Local power analysis
 - Under the null, can consistently estimate δ
- Relatively easy to implement

KEY INGREDIENTS OF ROBUST SCORE TEST

Purpose:

► Conduct inference on $\beta = 0$ in the presence of unknown selection mechanisms and coefficients of exogenous covariates δ

Procedures:

- 1. Given Q_0 and an alternative $\beta^{(i)} = 0 + h_i / \sqrt{n}$, compute Q_1
- 2. Compute the score (derivative) of the log likelihood $\ln Q_1$
- 3. Estimate δ by restricted MLE (under $\beta = 0$)
- 4. Compute the test statistic

SCORE FUNCTIONS

For one observation, takes the following general form

$$\dot{\ell}(s;x) = \begin{bmatrix} \dot{\ell}_{\beta}(s;x) \\ \dot{\ell}_{\delta}(s;x) \end{bmatrix} = \sum_{\bar{x} \in X} \sum_{\bar{s} \in S} 1\{x = \bar{x}, s = \bar{s}\} \begin{bmatrix} z_{\beta}(\bar{s};\bar{x}) \\ z_{\delta}(\bar{s};\bar{x}) \end{bmatrix},$$

where for each $\bar{s} \in S$ and $\bar{x} \in X$,

$$\begin{split} z_{\beta}(\bar{s};\bar{x}) &= \begin{bmatrix} z_{\beta^{(1)}}(\bar{s};\bar{x}) \\ z_{\beta^{(2)}}(\bar{s};\bar{x}) \end{bmatrix} = \frac{\partial}{\partial\beta} \ln q_{1}(\bar{s};\bar{x}) \\ z_{\delta}(\bar{s};\bar{x}) &= \begin{bmatrix} z_{\delta^{(1)}}(\bar{s};\bar{x}) \\ z_{\delta^{(2)}}(\bar{s};\bar{x}) \end{bmatrix} = \frac{\partial}{\partial\delta} \ln q_{1}(\bar{s};\bar{x}) \end{split}$$

For a sequence of observations:

$$\sum_{i=1}^{n} \dot{\ell}(s;x) = \begin{bmatrix} \sum_{i=1}^{n} \dot{\ell}_{\beta}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\delta}(s;x) \end{bmatrix} = \sum_{\bar{s} \in S} \sum_{\bar{x} \in X} \#\{(\bar{s},\bar{x})\} \begin{bmatrix} z_{\beta}(\bar{s};\bar{x}) \\ z_{\delta}(\bar{s};\bar{x}) \end{bmatrix}$$

 $\#\{(\bar{s},\bar{x})\}$: number of occurrences of event \bar{s} and covariate \bar{x}

Hypothesis and Neyman's Orthogonality

▶ Inference on β in the presence of nuisance parameter δ :

$$H_0: \beta_0 = (\beta_0^{(1)}, \beta_0^{(2)}) = (0, 0), \ \delta \in \Theta_{\delta}$$

$$H_1: \beta_1 = (\beta_1^{(1)}, \beta_1^{(2)}) < (0, 0), \ \delta \in \Theta_{\delta}$$

▶ Precursor: Neyman's $C(\alpha)$ test

$$C_{\beta,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\beta}(s; x), \quad C_{\delta,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\delta}(s; x)$$

- Replace unknown δ with consistently estimated $\widehat{\delta}$
- ► To guard against estimation error, orthogonalize the score using

$$\mathbb{E}_{Q(\beta,\delta)} \begin{bmatrix} \sum_{i=1}^{n} \dot{\ell}_{\beta^{(1)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\beta^{(2)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\delta^{(1)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\delta^{(2)}}(s;x) \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} \dot{\ell}_{\beta^{(1)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\beta^{(2)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\delta^{(1)}}(s;x) \\ \sum_{i=1}^{n} \dot{\ell}_{\delta^{(2)}}(s;x) \end{bmatrix}' = \begin{bmatrix} I_{\beta\beta}, I_{\beta\delta} \\ I_{\delta\beta}, I_{\delta\delta} \end{bmatrix}$$

SUP TEST STATISTIC

The orthogonalized score under $Q_{(\beta_0, \delta_0)}$:

$$g_n(\delta) = C_{\beta_0,n} - I_{\beta_0\delta} I_{\delta\delta}^{-1} C_{\delta,n}$$

which has variance

$$I_{\beta:\delta} = I_{\beta\beta} - I_{\beta\delta}I_{\delta\delta}^{-1}I_{\delta\beta}$$

Define

$$Z_n = \begin{pmatrix} z_{1,n} \\ z_{2,n} \end{pmatrix} := I_{\beta_0:\widehat{\delta}}^{-1/2} g_n(\widehat{\delta})$$

and consider the following test statistic

$$T_n := \max \{|z_{1,n}|, |z_{2,n}|\}$$

Remark: In simulations need regularization on $I_{\delta\delta}$ or $I_{\beta:\delta}$

LIMITING DISTRIBUTION AND CRITICAL VALUE

Limiting distribution:

$$T_n := \max \left\{ |z_{1,n}|, |z_{2,n}| \right\} \overset{a}{\sim} \sup\{ |w_1|, |w_2|\},$$

where $[w_1, w_2]' \sim \mathcal{N}(0, I_2)$. The critical value for size α is defined to be

$$c_{\alpha} = \inf\{x : Pr(\sup\{|w_1|, |w_2|\} \le x) \ge 1 - \alpha\}$$

Procedures of getting critical values:

- 1. Draw a 2×5000 vector from standard normal distribution
- 2. Take max of absolute value for each row
- 3. Compute the (1α) th quantile

Monte Carlo Simulation Design

Parameters

Fix
$$\delta_0 = [2, 2.5]$$
, $n = [200, 500, 1000, 1500, 3000, 5000]$
Size: $\beta_0 = [0, 0]$,
Power: $\beta_0^{(1)} = \beta_0^{(2)} = -h/\sqrt{n}$, $h = -[eps: 0.5: 15]$

DGP Construction Procedures

- 1. Draw x from the uniform discrete distribution $U\{-1,1\}^2$. Four possible configurations: (1, 1), (1, -1), (-1, 1) and (-1, -1).
- 2. Draw (u_1, u_2) from the bivariate standard normal distribution.
- 3. For each draw of (u_1, u_2) , determine $G(u \mid \beta; X, \delta)$ based on the analytical form.
- 4. Repeat procedures 1–3 for S = 5000 times

Remark: When $\beta_0 \neq 0$, multiple equilibria exist for some draws of (u_1, u_2) , select according to one of the three selection mechanisms:

IID: Non IID: LFP

Size Properties

TABLE: Empirical Finite–Sample Size of Sup Statistic Test ($\alpha = 0.05$)

N = 200	N = 500	N = 1000	N = 1500	N = 3000	N = 5000
0.0306	0.0535	0.0568	0.0572	0.0492	0.0516

- ► In small sample, need regularization on test statstic
- Currently don't have a data-driven rule

Local Power Properties

EMPIRICAL APPLICATION

Data: 2nd quarter of 2010 Airline Origin and Destination Survey

- Source: Kline and Tamer (2016, QE)
- 7882 markets: trips between two airports irrespective of intermediate stops
- Players: LCC (low cost carriers); OA (other airlines)

Payoff of player $i = \{LCC, OA\}$ if it enters market m:

$$\delta_i^{cons} + \delta_i^{size} X_{m,size} + \delta_i^{pres} X_{i,m,pres} + \beta_i y_{-i,m} + \varepsilon_i$$

- ► $X_{m,size}$: size of market m; 1 if larger than median, 0 o.w.
- \triangleright $X_{i,m,pres}$: market presence of i in m; 1 if larger than median, 0 o.w.
- $y_{-i,m}$: 1 if opponent enters, 0 o.w.
- \triangleright ε_{LCC} and ε_{OA} are bivariate standard normal

Hypothesis: $\beta = 0, \delta \in \Theta_{\delta}$ vs $\beta < 0, \delta \in \Theta_{\delta}$

IMPLEMENTATION AND RESULT

- 1. Under the null, estimate δ_{LCC} and δ_{OA} using RMLE with multiple starting points
- 2. Compute the sup test statistic

Test statistic: $2.9102 > crit_{0.99} = 2.7244$

- Reject the null, competition effect exists
- Confirms results in Kline and Tamer (2016)

ONGOING WORK

- Testing on the sign of interaction effects: differentiation vs coordination in an incomplete information game¹
 - Incomplete information: error realization is private knowledge
 - ► Application in mind: radio commercials (Sweeting, 2009)
 - Challenge: multiple equilibria affects outcome indirectly via equilibrium choice probabilities
- A null that features incompleteness
 - **Challenge:** might not be able to consistently estimate δ
- Combine with a test that has global power
 - Two-step testing approach
 - Challenge: how to account for first-step testing error?

¹We thank Marc Rysman for suggesting this extension.

Conclusion

- An incomplete model makes set-valued predictions
- Assumptions on selection mechanisms and data sampling affect estimation and inference
- Robust score test for the existence of interaction effects

AN EXAMPLE OF LFP IN A MARKET

When (1,0) is played for sure in the multiplicity region:

$$Q_1 = (q_1(0,0), q_1(0,1), q_1(1,0), q_1(1,1)),$$

where

$$\begin{split} q_1(0,0) &= (1-\Phi_1)(1-\Phi_2) \\ q_1(0,1) &= (1-\Phi_1)\Phi_2 + \Phi(x^{(2)}'\delta_2 + \beta^{(2)})[\Phi_1 - \Phi(x^{(1)}'\delta_1 + \beta^{(1)})] \\ q_1(1,0) &= \Phi_1(1-\Phi(x^{(2)}'\delta^{(2)} + \beta^{(2)})) \\ q_1(1,1) &= \Phi(x^{(1)}'\delta^{(1)} + \beta^{(1)})\Phi(x^{(2)}'\delta^{(2)} + \beta^{(2)}) \end{split}$$

◆ Back

Size and Power in Testing

- Two concepts in hypothesis testing: size and power
 - ightharpoonup Size: given that H_0 is true, probability that the test rejects H_0
 - **Power:** given that H_1 is true, probability that the test rejects H_0
- For size properties, examine the distribution of the test under H_0
 - ► Implication? LM test has good size
 - ▶ In Monte Carlo, generate data under *H*₀ and compare empirical critical values with theoretical ones
- ▶ The alternative is $h(\theta) \neq 0$, rather broad
 - Depends on direction and magnitude of deviation from the null
 - 1. Direction: Tests are typically not omnibus
 - 2. Magnitude: local power analysis
 - ► Implication? Wald test has good power for specific alternatives²
 - ▶ In Monte Carlo, generate data under specific *H*₁
- ► Takeaway: Among tests that have well—controlled size, the optimal test should have the highest power, which depends on the alternatives.
 Back

²However, one drawback of Wald is that it is not invariant to the way the hypothesis is written unless it is linear.

NON IID DETAILS

Let N_k^* be an increasing sequence of integers. For each i, let $h(i) = N_k^*$ where $N_{k-1}^* < i \le N_k^*$, define

$$\tilde{\gamma}_i = \begin{cases} 1 & \Psi^G_{h(i)}(u) > \Lambda_{h(i)} \\ 0 & \Psi^G_{h(i)}(u) \leq \Lambda_{h(i)} \end{cases}$$

where

$$\Psi_{h(i)}^{G}(u) = \frac{\sum_{i=1}^{h(i)} 1[G(u_i|\beta; X, \delta) = \{(1, 0)\}]}{\sum_{i=1}^{h(i)} 1[G(u_i|\beta; X, \delta) = \{(1, 0), (0, 1)\}]}$$

Conditional on X, compute the conditional lower probabilities of (1,0) and (0,1), $\nu_{\beta,\delta|X}((1,0))$ and $\nu_{\beta,\delta|X}((0,1))$. Let N_c denote the number of occurrences of X's configuration c within N_k^* , i.e., $\sum_c N_c = h(i)$, calculate the empirical weighted sum of the two events and define $\Lambda_{h(i)}$ as follows,

$$\Lambda_{h(i)} = \frac{\sum_{c \in \{(1,1),(1,-1),(-1,1),(-1,-1)\}} N_c \nu_{\beta,\delta|c}((1,0))}{\sum_{c \in \{(1,1),(1,-1),(-1,1),(-1,-1)\}} N_c \left(\nu_{\beta,\delta|c}((1,0)) + \nu_{\beta,\delta|c}((0,1))\right)}$$

LFP MECHANISM ILLUSTRATION

FIGURE: CDF of LFP of One Observation

4/5

Power Properties

One possible reason for similarity: difference between different selection mechanism arises with small probabilties given the alternatives

