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I One type of incompleteness: multiple equilibria
I Complete information entry game
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I Likelihood–based estimation
I Assumptions to complete the model a�ects inference
I Assumptions on data sampling a�ect inference

I Work in progress: robust score test
I Inference on existence and sign of interaction e�ect
I Robust to not knowing which equilibrium is played
I Why not likelihood ratio test? Nuisance parameters
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Model Coherence and Completeness (Lewbel, 2019)

Consider a proposed model of the form Y = H (Y ,V )
I Y : a vector of endogenous outcomes (prices, agent choices, etc.)
I V : a set of (un)observables that determine outcomes (parameters

of interest, exogenous covariates, error terms, etc.)

The model is coherent if
I ∀v ∈ ΩV , ∃y ∈ ΩY s.t. y = H (y, v)

The model is complete if
I ∀v ∈ ΩV , ∃ at most one y ∈ ΩY s.t. y = H (y, v)



4/33

Model Incoherence and Incompleteness

The reduced form of the model expresses Y solely in terms of V

y = G(v)

Remarks:
I Coherenence and completeness feature a unique reduced form

G(v) = H (G(v), v)

I An incoherent model has no solution for some values of v
I A game with no Nash Equilibrium

I A coherent and incomplete model has multiple solutions for some
values of v
I A game with multiple Nash Equilibria
I Reduced form G(·) is not unique
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Binary Complete Info Static Entry–Exit Game

Out In
Out 0, 0 0, x (2) ′X (2) + u (2)

In x (1) ′X (1) + u (1) , 0 x (1) ′X (1) + V (1) + u (1) , x (2) ′X (2) + V (2) + u (2)

I Competition e�ect: V (1) < 0, V (2) < 0
I u := (u (1) , u (2) ) ∼ N (0, I 2)

I Complete info: realizations are perfectly observed by both players
I x (i) : exogenous covariates
I X (i) : nuisance parameters
I Inference: H0 : V (i) = 0, X ∈ ΘX vs H1 : V (i) < 0, X ∈ ΘX

I Solution concept: pure strategy Nash Equilibrium
1. (0, 0) is a NE when u (i) < −x (i) ′X (i)
2. (1, 1) is a NE when u (i) > −x (i) ′X (i) − V (i)
3. (1, 0) is a NE when u (1) > −x (1) ′X (1) and u (2) < −x (2) ′X (2) − V (2)
4. (0, 1) is a NE when u (2) > −x (2) ′X (2) and u (1) < −x (1) ′X (1) − V (1)

I (3) and (4) intersects: −x (i) ′X (i) < u (i) < −x (i) ′X (i) − V (i)
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Visualization of the Eqilibria

u1

u2

A

{(1, 1)}

{(1, 0)}

{(0, 1)}

{(0, 0)}

u1

u2

A

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

{(1, 0),
(0, 1)}

I A ≡ (−x (1) ′X (1) ,−x (2) ′X (2) ),
B ≡ (−x (1) ′X (1) − V (1) ,−x (2) ′X (2) − V (2) )

I Incompleteness: relationship from u, X , V and X to y is a
correspondence rather than a function (Tamer, 2003)

I Complete if either V (1) = V (2) = 0, or an equilibrium selection
mechanism is imposed in the blue region
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Model–predicted Distributions of Outcomes

P\ =

{
P ∈ Δ(S) : P =

∫
U
Pudm\ (u), for some Pu ∈ Δ(G(u | \;X ))

}
I \ := (V, X)
I S: set of potential outcomes {(0, 0), (0, 1), (1, 0), (1, 1)}
I Δ(·) : probabilty simplex
I Pu : equilibrium selection mechanism
I m\ (·) : probability measures on U
I G(u | \;X ): set of model–predicted outcomes

Remarks:
I G(u | \;X ): math expression of graphs in the previous slide
I V (1) = V (2) = 0: unique distribution, set of distributions otherwise
I X can enter nonlinearly
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Data: A Cross Section of Markets

Consider a sequences of observed outcomes and latent variables

sn = (s1, ..., sn), un = (u1, ..., un)

Assumption: For each \ ∈ Θ, mn
\
∈ Δ(U n) is a product measure: ui’s

are i.i.d across markets
I Takes values in Cartesian product of sets of permissible outcomes

sn ∈ Gn(un | \;X ) =
n∏
i=1

G(ui | \;X )

I Set of model–compatible distributions:

Pn
\ =

{
P ∈ Δ(Sn) : P =

∫
U
Pudmn

\ , for some Pu ∈ Δ(Gn(un |\;X ))
}

Does this assumption restrict selection mechanisms to be IID? NO
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MLE is not Straightforward in Incomplete Models

I When V = 0, unique model prediction and hence likelihood
I When V ≠ 0, if impose a selection in blue region (e.g., (1, 0) is

played for sure in each market), still unique likelihood
I But not knowing the selection? Non-unique likelihood, hence

MLE not feasible

Remarks:
I Each specification of a selection leads to a di�erent likelihood,

hence MLE result
I Motivates an alternative approach that is agnostic about the

selection mechanism
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Bounds Approach (Ciliberto and Tamer, 2009)

u1

u2

A

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

{(1, 0),
(0, 1)}

I Pr (u ∈ yellow) ≤ Pr ((1, 0)) ≤ Pr (u ∈ yellow) + Pr (u ∈ blue)
I In vector form: H1();X) ≤ Pr (y | X) ≤ H2();X)

I Identified set: set of pars ) = (#, %) that satsifies inequalties
I Estimate identified set and construct confidence region
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Why Incompleteness Can Affect Inference

I Inference on identified set imposes i.i.d. or stationarity and
mixing assumptions on data (e.g., Chernozhukov, Hong and
Tamer, 2007)

I Unknown selection mechanisms across markets can cause
unobserved heterogeneity and dependence

I May lead to non–ergodic distribution of data
I Invalidates central limit theorem (Epstein, Kaido and Seo, 2016)
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One Example of Non–ergodic Seqence
I Suppose the N markets can be partitioned into clusters

I e.g.: Markets 1–4 form a cluster, 5–15 form a cluster, etc.
I Within each cluster k, a Bernoulli random variable picks (1, 0)

with some cluster–specific cuto� rule
I The sequence of Bernoulli r.v. is i.n.i.d, but the selection

mechanisms within each cluster are dependent
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Introduction of Least Favorable Pairs
Consider the simple null vs simple alternative testing in one market:

H0 : ) = )0, H1 : ) = )1

I Under H0, set of model–compatible distributions P)0
I Under H1, set of model–compatible distributions P)1

A test q : S → [0, 1] should
I Control the size under any distribution in P)0
I Have good power under any distribution in P)1

I Lower power: power guaranteed regardless of unknown selection

Least favorable pair (LFP): Q0 ∈ P)0 and Q1 ∈ P)1
I Q0 is least favorable for size control: among all distributions in
P)0 , largest type one error

I Q1 is least favorable for lower power: among all distributions in
P)1 , smallest power

Recap of size and power
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LFP for Inference

Intuition:
I Given a simple hypothesis, find the pair of distributions that is

the most di�icult to distinguish from each other

Why can we do this?
I P\ has a structure

I Characterize the set using lower probabilities
I Entry–game: smallest probability that each outcome is played

I Tradeo�: P\ comes from model primitives

How do we do this?
I A convex algorithm based on Huber and Strassen (1973)
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How to Compute an LFP in a Market

Conditional on X and %, under the null #0 = 0:
I Unique distribution of outcomes (0, 0), (0, 1), (1, 0), (1, 1):

Q0 =
(
(1 −Φ1) (1 −Φ2), (1 −Φ1)Φ2,Φ1(1 −Φ2),Φ1Φ2

)
,

where Φi := Φ(x (i) ′X (i) )

Under an alternative #1 ∈ B := (−∞, 0) × (−∞, 0):
I The algorithm partitions B into three regions whose boundaries

depend on #1,X and %
I Economic interpretation: in the region of multiplicity, (1, 0) is

played; (0, 1) is played; a mixture is played

I Each region has a unique distribution dependent on #1,X and %

Given a specific alternative, algorithm determines the region it’s in
and hence distribution Q1

An example of LFP form
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LFPs in Cross Section

If latent variables are i.i.d. across markets, LFP for sn is a Cartesian
product of LFP for each market outcome (Kaido and Zhang, 2019)
I Even though selection mechanisms across markets can be

intertwined in unknown forms, it doesn’t ma�er for product LFP

I Each LFP is a pair of likelihood, product LFP is likelihood

I A unique likelihood under the null, another under the alternative

I Implication? Likelihood ratio test for simple hypothesis testing
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Robust Likelihood Ratio Test (Kaido and Zhang, 2019)
Cross section without exogenous covariates, inference is

H0 : V (i) = 0, H1 : V (i) = #1

Likelihood ratio test: qn : Sn ↦→ [0, 1] such that

qn(sn) =


1 Λn(sn) > Cn

Wn Λn(sn) = Cn

0 Λn(sn) < Cn

1. Given the alternative, compute LFP Q0 and Q1 for each market

2. Form ratio of using likelihood pairs: Λn(sn) =
∏n

i=1
dQ1 (si)
dQ0 (si)

3. Compute `Q0 = EQ0 (lnΛn(sn)) and f2
Q0
= VarQ0 (Λn(sn)). Denote

zU as 1 − U quantile of N(0, 1), construct the critical value

Cn = exp(n`Q0 +
√
nzUfQ0)
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Why Robust Score Test?

Motivation:
I Subvector inference:

H0 : V (i) = 0, % ∈ ΘX H1 : V (i) < 0, % ∈ ΘX

I Composite null and composite alternative
I Kaido and Zhang (2019) provide a likelihood-ratio test that

I controls size uniformly over Θ0 ≡ {\ := (#, %) : V (i) = 0, X ∈ ΘX}
I maximizes the weighted average lower power
I becomes computationally intensive for moderately high

dimensional %

Advantages of score test:
I Local power analysis

I Under the null, can consistently estimate %

I Relatively easy to implement
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Key Ingredients of Robust Score Test

Purpose:
I Conduct inference on # = 0 in the presence of unknown selection

mechanisms and coe�icients of exogenous covariates %

Procedures:
1. Given Q0 and an alternative V (i) = 0 + hi/

√
n, compute Q1

2. Compute the score (derivative) of the log likelihood lnQ1

3. Estimate % by restricted MLE (under # = 0)
4. Compute the test statistic
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Score Functions
For one observation, takes the following general form

¤ℓ(s; x) =
[ ¤ℓV (s; x)
¤ℓX (s; x)

]
=

∑̄
x∈X

∑̄
s∈S

1{x = x̄, s = s̄}
[
zV (s̄; x̄)
zX (s̄; x̄)

]
,

where for each s̄ ∈ S and x̄ ∈ X ,

zV (s̄; x̄) =
[
zV (1) (s̄; x̄)
zV (2) (s̄; x̄)

]
=
m

mV
ln q1(s̄; x̄)

zX (s̄; x̄) =
[
zX (1) (s̄; x̄)
zX (2) (s̄; x̄)

]
=
m

mX
ln q1(s̄; x̄)

For a sequence of observations:

n∑
i=1

¤ℓ(s; x) =
[∑n

i=1
¤ℓV (s; x)∑n

i=1
¤ℓX (s; x)

]
=

∑̄
s∈S

∑̄
x∈X

#{(s̄, x̄)}
[
zV (s̄; x̄)
zX (s̄; x̄)

]
#{(s̄, x̄)}: number of occurrences of event s̄ and covariate x̄
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Hypothesis and Neyman’s Orthogonality
I Inference on V in the presence of nuisance parameter X:

H0 : V0 = (V (1)0 , V
(2)
0 ) = (0, 0), X ∈ ΘX

H1 : V1 = (V (1)1 , V
(2)
1 ) < (0, 0), X ∈ ΘX

I Precursor: Neyman’s C (U) test

CV,n =
1
√
n

n∑
i=1

¤ℓV (s; x), CX,n =
1
√
n

n∑
i=1

¤ℓX (s; x)

I Replace unknown X with consistently estimated X̂
I To guard against estimation error, orthogonalize the score using

EQ(V,X)


∑n

i=1
¤ℓV (1) (s; x)∑n

i=1
¤ℓV (2) (s; x)∑n

i=1
¤ℓX (1) (s; x)∑n

i=1
¤ℓX (2) (s; x)



∑n

i=1
¤ℓV (1) (s; x)∑n

i=1
¤ℓV (2) (s; x)∑n

i=1
¤ℓX (1) (s; x)∑n

i=1
¤ℓX (2) (s; x)


′

=

[
IVV ,IVX
IXV,IX X

]
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Sup Test Statistic

The orthogonalized score under Q(V0, X0) :

gn(X) = CV0,n − IV0 XI−1XXCX,n

which has variance

IV:X = IVV − IVXI−1X XIXV

Define

Zn =
(
z1,n
z2,n

)
:= I−1/2

V0: X̂
gn(X̂)

and consider the following test statistic

Tn := max
{
|z1,n |, |z2,n |

}
Remark: In simulations need regularization on IXX or IV:X
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Limiting Distribution and Critical Value

Limiting distribution:

Tn := max
{
|z1,n |, |z2,n |

}
a∼ sup{|w1 |, |w2 |},

where [w1,w2] ′ ∼ N(0, I2). The critical value for size U is defined to be

cU = inf{x : Pr (sup{|w1 |, |w2 |} ≤ x) ≥ 1 − U}

Procedures of ge�ing critical values:

1. Draw a 2 × 5000 vector from standard normal distribution

2. Take max of absolute value for each row

3. Compute the (1 − U)th quantile
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Monte Carlo Simulation Design
Parameters

Fix X0 = [2, 2.5], n = [200, 500, 1000, 1500, 3000, 5000]
Size: V0 = [0, 0],
Power: V (1)0 = V

(2)
0 = −h/

√
n, h = −[eps : 0.5 : 15]

DGP Construction Procedures
1. Draw x from the uniform discrete distribution U {−1, 1}2. Four

possible configurations: (1, 1), (1,−1), (−1, 1) and (−1,−1).
2. Draw (u1, u2) from the bivariate standard normal distribution.

3. For each draw of (u1, u2), determine G(u | V;X , X) based on the
analytical form.

4. Repeat procedures 1–3 for S = 5000 times

Remark: When V0 ≠ 0, multiple equilibria exist for some draws of
(u1, u2), select according to one of the three selection mechanisms:
I IID; Non IID; LFP
Non IID Details LFP Illustration
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Size Properties

Table: Empirical Finite–Sample Size of Sup Statstic Test (U = 0.05)

N = 200 N = 500 N = 1000 N = 1500 N = 3000 N = 5000
0.0306 0.0535 0.0568 0.0572 0.0492 0.0516

I In small sample, need regularization on test statstic
I Currently don’t have a data–driven rule
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Local Power Properties

Plots for Non IID and LFP
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Empirical Application

Data: 2nd quarter of 2010 Airline Origin and Destination Survey
I Source: Kline and Tamer (2016, QE)
I 7882 markets: trips between two airports irrespective of

intermediate stops
I Players: LCC (low cost carriers); OA (other airlines)

Payo� of player i = {LCC,OA} if it enters market m:

Xconsi + Xsizei Xm,size + Xpresi Xi,m,pres + Viy−i,m + Yi

I Xm,size: size of market m; 1 if larger than median, 0 o.w.
I Xi,m,pres: market presence of i in m; 1 if larger than median, 0 o.w.
I y−i,m: 1 if opponent enters, 0 o.w.
I YLCC and YOA are bivariate standard normal

Hypothesis: # = 0, % ∈ ΘX vs # < 0, % ∈ ΘX
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Implementation and Result

1. Under the null, estimate %LCC and %OA using RMLE with multiple
starting points

2. Compute the sup test statistic

Test statistic: 2.9102 > crit0.99 = 2.7244
I Reject the null, competition e�ect exists
I Confirms results in Kline and Tamer (2016)
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Ongoing Work

I Testing on the sign of interaction e�ects: di�erentiation vs
coordination in an incomplete information game1

I Incomplete information: error realization is private knowledge
I Application in mind: radio commercials (Sweeting, 2009)
I Challenge: multiple equilibria a�ects outcome indirectly via

equilibrium choice probabilities

I A null that features incompleteness
I Challenge: might not be able to consistently estimate %

I Combine with a test that has global power
I Two–step testing approach
I Challenge: how to account for first–step testing error?

1We thank Marc Rysman for suggesting this extension.



33/33

Conclusion

I An incomplete model makes set–valued predictions
I Assumptions on selection mechanisms and data sampling a�ect

estimation and inference
I Robust score test for the existence of interaction e�ects
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An Example of LFP in a Market

When (1, 0) is played for sure in the multiplicity region:

Q1 = (q1(0, 0), q1(0, 1), q1(1, 0), q1(1, 1)),

where

q1(0, 0) = (1 −Φ1) (1 −Φ2)
q1(0, 1) = (1 −Φ1)Φ2 +Φ(x (2) ′X2 + V (2) ) [Φ1 −Φ(x (1) ′X1 + V (1) )]
q1(1, 0) = Φ1(1 −Φ(x (2) ′X (2) + V (2) ))
q1(1, 1) = Φ(x (1) ′X (1) + V (1) )Φ(x (2) ′X (2) + V (2) )

Back
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Size and Power in Testing
I Two concepts in hypothesis testing: size and power

I Size: given that H0 is true, probability that the test rejects H0
I Power: given that H1 is true, probability that the test rejects H0

I For size properties, examine the distribution of the test under H0
I Implication? LM test has good size
I In Monte Carlo, generate data under H0 and compare empirical

critical values with theoretical ones
I The alternative is h(\) ≠ 0, rather broad

I Depends on direction and magnitude of deviation from the null
1. Direction: Tests are typically not omnibus
2. Magnitude: local power analysis

I Implication? Wald test has good power for specific alternatives2
I In Monte Carlo, generate data under specific H1

I Takeaway: Among tests that have well–controled size, the
optimal test should have the highest power, which depends on
the alternatives. Back

2However, one drawback of Wald is that it is not invariant to the way the
hypothesis is wri�en unless it is linear.
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Non IID Details
Let N ∗k be an increasing sequence of integers. For each i, let h(i) = N ∗k
where N ∗k−1 < i ≤ N ∗k , define

ãi =

{
1 ΨG

h(i) (u) > Λh(i)

0 ΨG
h(i) (u) ≤ Λh(i)

where

ΨG
h(i) (u) =

∑h(i)
i=1 1[G(ui |V;X , X) = {(1, 0)}]∑h(i)

i=1 1[G(ui |V;X , X) = {(1, 0), (0, 1)}]
Conditional on X , compute the conditional lower probabilities of (1, 0)
and (0, 1), aV, X |X ((1, 0)) and aV, X |X ((0, 1)). Let Nc denote the number
of occurrences of X ’s configuration c within N ∗k , i.e.,

∑
c Nc = h(i),

calculate the empirical weighted sum of the two events and define
Λh(i) as follows, Back

Λh(i) =

∑
c∈{(1,1) , (1,−1) , (−1,1) , (−1,−1) } NcaV, X |c ((1, 0))∑

c∈{(1,1) , (1,−1) , (−1,1) , (−1,−1) } Nc

(
aV, X |c ((1, 0)) + aV, X |c ((0, 1))

)
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LFP Mechanism Illustration

Events

Prob

(0, 0) (1, 1) (1, 0) (0, 1)

ai

0

1

Realization

Figure: CDF of LFP of One Observation

Back



5/5

Power Properties

I One possible reason for similarity: di�erence between di�erent
selection mechanism arises with small probabilties given the
alternatives

Back
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