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Development of estimation methods

I Closed–form expressions
I OLS, IV

I Maximum likelihood and moment–based estimation
I development of mathematics (Jennrich, 1969)
I Hansen (1982), Manski and Tamer (2002)

I Simulation–based method
I i.i.d discrete choice (Pakes and Pollard, 1989)
I consumption asset pricing (Du�ie and Singleton, 1993)
I indirect inference (Smith, 1993; Gourieoux et al., 1993)

I Deep learning
I single layer neural network (Chen and White, 1999)
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Uncertain demand (Collard–Wexler, 2013)

Motivation
I sunk entry costs, uncertainty in demand conditions creates a

barrier to entry
I business-cycle fluctuations can have real e�ects on the structure

of markets and welfare

Ready–mix concrete industry
I homogeneous good
I local oligopolies: wet concrete hard to travel
I demand fluctuations from construction sector and gov.t

How does demand volatility a�ect the organization of production?
I estimate a model of entry and discrete investment choices
I counterfactual: demand–smoothing policy
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Dynamic oligopoly game

Firm i’s state at time t:
sti = {xti , Yti }

I xti : current and past plant sizes (common knowledge)
I Yti : i.i.d private information

Firm action:
ati = {∅, small,medium, large}

Demand evolves with a transition probability: D(M t+1 |M t)
Firm’s payo�

r (xt+1i , xt+1−i |\) + g(xt+1i = ati , x
t
i |\) + Yti

I r (·): rewards from operation
I g(·): transition costs
I Yti : logit shock
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Timing of the game

1. Firms privately observe Yti and publicly observe xt

2. Firms simultaneously choose ati
3. Demand evolves from M t to M t+1; firms states evolve

4. Payo�s are realized
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What moments to match

Optimal conditional choice probabilities

Ψ(ai |x, Γ, \)

I Γ: summarizes state evolution of choices and market demand

Natural way
I Given \, simulate data, compute an equilibrium to the dynamic

game, match to the data, repeat

Challenge
I computing an equilibrium for dynamic games is non–trivial
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Structure of the presentation

I Key ingredients of indirect inference

I Connection with SMM

I Theoretical properties

I Bias corrections (in panel data analysis)
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Indirect Inference: Set up

Dynamic model:

yt = r (yt−1, xt , ut , \)
ut = i(ut−1, Yt , \), \ ∈ Θ ∈ RP

I xt : observable exogenous variables
I ut : unobservable
I Yt : white noise with known distribution G0

I \: parameter of interest
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Simulating Data from the Model

1. Specify initial values z0 = (y0, u0) and a guess \

2. Set seed and draw shocks {Ỹt}Tt=1 from G0

3. Given {xt}, for t = 0, ..., T , compute ỹt (\, z0), where

ỹ0(\, z0) = y0

ỹt (\, z0) = r
(
ỹt−1(\, z0), xt , ũt (\, u0), \

)
ũt (\, u0) = i

(
ũt−1(\, u0), Ỹt , \

)
Can we do MLE with simulated/synthetic data?
I Yes, can compute the conditional density of ỹ1, ..., ỹT given

z0, x1, ..., xT and construct the conditional likelihood function
I But in practice the likelihood may be intractable
I Consider an alternative way of estimating \
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Auxiliary Model

The goal of indirect inference is to choose \ so that the observed data
and the simulated data look the same from the vantage point of the
chosen window (or auxiliary model)
I auxiliary model is parameterized by V
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Back to the Example

Outcome vector from the data

yn =
©«

1(an = small)
1(an = medium)

1(an = big)

ª®¬
Outcome vector from the model

ỹn(\) =
©«
Ψ(small|xn, \)
Ψ(medium|xn, \)
Ψ(big|xn, \)

ª®¬
Auxiliary model: linear probability (OLS)

yn = ZnV + un
I Zn: indicators for the firm’s current state; # competitors in a

market; the log of construction employment in the county.



12/23

Structure of the presentation

I Key ingredients of indirect inference

I Connection with SMM

I Theoretical properties
I Bias corrections (in panel data analysis)
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SMM is a special case of indirect inference

Main idea of indirect inference:
I fit data to an auxiliary model and obtain statistics V̂, Ṽ(\)
I solve the following optimization problem

min
\ ∈Θ
( V̂ − Ṽ(\))W ( V̂ − Ṽ(\)) ′

Recall SMM main steps
I moments from data m̂, e.g., mean, standard deviation, ratio
I moments from simulated data m̃(\)
I solve the following optimization problem

min
\ ∈Θ
(m̂ − m̃(\))W (m̂ − m̃(\)) ′
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Structure of the presentation

I Key ingredients of indirect inference

I Theoretical properties

I Connections with SMM
I Bias corrections (in panel data analysis)
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Consistency

Under three conditions

1. an invertible relationship between \ and V(\) (binding function)
2. V̂ converges to V0

3. Ṽ(\) uniformly converges to V(\):

sup
\ ∈Θ
‖ Ṽ(\) − V(\)‖

p
−→ 0
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Asymptotic normality

√
T (\̂ − \0)

d−→ N(0,
(
1 + 1

H

) [mb′
m\
(\0)J0I−10 J0

mb
m\ ′
(\0)

]−1
)
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Structure of the presentation

I Key ingredients of indirect inference
I Connections with simulated method of moments
I Theoretical properties

I Bias corrections (in panel data analysis)
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Motivating Example: Neyman and Scott (1948)

Consider independent {Xit}, i = 1, . . . , n and t = 1, . . . , T where

Xit ∼ N(Ui0, \0)

Goal: estimate common variance \0 with unknown individual Ui0’s
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FE estimator of common variance

I Fixed E�ects Estimator:

Ûi =
1
T

T∑
t=1

Xit , \̂FE =
1
nT

n∑
i=1

T∑
t=1
(Xit − Ûi)2

I Incidental parameters: Ui’s

1. nuisance parameters

2. dimension increases with n
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Incidental parameter problem

I Let n→∞ while fix T , \̂FE
p
−→ \T , where

\T = \0−
\0

T

I Source of the problem: each Ûi is estimated using T observations,
estimation errors don’t vanish as n→∞ and T fixed
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Indirect Inference FE Estimator (Chen, 2022)

I Given \, simulate {Xh
it (Ûi, \), i = 1, . . . , n; t = 1, · · · , T } as

Xh
it = Ûi +

√
\uhit , uhit ∼ N(0, 1)

h denotes a simulation path (h = 1, · · · ,H )
I From simulated data, can obtain \̂hFE (Û1, · · · , Ûn, \)

I If \ is close to \0, then {Xit (Ui0, \0)} and {Xh
it (Ûi, \)} should look

similar in terms of statistics of data:

\̂FE, \̂hFE (Û1, · · · , Ûn, \)

I Calibrate \ so that

\̂FE =
1
H

H∑
h=1

\̂hFE (Û1, · · · , Ûn, \)
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Monte Carlo for Neyman Scott

I \̂FE is severely biased
I \̂II centers around \0
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Intuition for bias correction

I the auxiliary model is incorrectly specified

I whether V̂ is a correct estimator does not ma�er

I observed data and simulated data are fit to the same auxiliary
model

I will mimic the bias structure
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